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COORDINATED RADAR AND AIRCRAFT OBSERVATIONS OF TURBULENCE

1.0 INTRODUCTION

The ability to sense and display regions of hazardous turbulence aloft is

an essential prerequisite to the selection of safe, minimum-distance-traveled

flight paths. Lincoln Laboratory, under a program sponsored by the Federal

Aviation Administration, has undertaken to measure and correlate radar- and

aircraft-sensed turbulence in rainstorms.* This paper presents interim re- -

sults of these measurements. Results of the measurements are expected to pro-

vide guidance in the design of equipment that will display areas of hazardous

turbulence with confidence. Plots of turbulence levels measured simultaneous-

ly by a ground radar and an aircraft are shown to illustrate the correlation.

Comparisons of the turbulence levels with the rain reflectivity are also made.

2.0 BACKGROUND

Precipitation reflectivity and spectral width as measured by a ground-

based weather radar have been used as turbulence indicators. The current re-

search focuses on an investigation of the use of spectral width as a reliable

indicator of turbulence in precipitation.

The dissipation factor, e, of the turbulent air mass can be measured by 1.

both the aircraft and the radar and is independent of type and speed of the

aircraft and of the radar parameters. The dissipation factor, as used in tur-

bulence theory, represents the kinetic energy converted to heat per unit mass

per unit time. This conversion to heat occurs at the end of the sequence

where the large eddies progressively decay into smaller and smaller eddies.

The conversion from kinetic to thermal energy occurs on the scale of milli-

meters. MacCready3 has related c to the response of a particular aircraft

as well as to a universal turbulence intensity scale.

*This work is an extension of the work reported in Reference I and is noted in
Reference 2.
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The quantity c can be determined directly by the aircraft by simply

measuring the fluctuations in instantaneous airspeed. Kolmogorov4 has shown

that the structure function of the instantaneous airspeed D - C(Cr2/3, where

D is defined as the average of the square of the difference of two successivev

airspeeds v measured a distance r apart. It is assumed that homogeneous

isotropic turbulence exists.

Dv W E{(v2 V1)21 - C(er) 2/3

The universal constant C has been experimentally determined to be 1.77 + .08.

It can also be shown (see Appendix A) that the acceleration* an aircraft

experiences is proportional to el/3 , i.e.,

4/3
"D 1 Kc112  1/3 v

a

Here p is the air density, v is the air-craft speed, m is the aircraft mass

and K is a constant of proportionality unique for a particular aircraft. It

is obvious from the above relations that the quantity el/ 3 rather than c

itself is the more useful quantity.

The ground-based radar can also determine c from measurements of the

width of the rainstorm radar spectrum. If it is assumed as before that the

turbulence is isotropic and homogeneous, then the following relation between

E / 3 and the spectral width ou holds:
5

au2 r(-2)*(ta)2/3r( I 1 2 1

u 3 3 22 a2

where a > b (1]

*Actually the square root of the acceleration structure function.
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The parameters above are defined as follows:

2
r(=) - iamas function (1.35411-)
3

a - universal constant (1.35 + .06)
a - radar half beamwidth (cm)-
b - radar half pulse length (ca)
F - Gaussian hypergeometrid

function

- dissipation factor (cm2 sec"3)

It is shown in Appendix B that equation [1] can be closely approximated by

Ou 2 a r(3)aWes)2/3 - 1.828(ca)2 /3  [21

Notice that Eqs. [I] and [2) do not contain an unknown constant of pro-

portionality. It is for this reason that the initial emphasis has been to

measure turbulence in terms of the spectral width rather than some other pa-

rameter such as velocity gradient where an equivalent theoretical relationship

is not available.

3.0 EQUIPMENT DESCRIPTION

The basic experiment consists of flying an nstrumented aircraft through-

a turbulent rainstorm while, at the same time, the ground-based instrumenta-

tion radar attempts to estimate the amount of turbulence (e /3) present via an

appropriate algorithm. One of the objects of this program is to determine the

best radar operating parameters and algorithm to use. A brief description of

the aircraft and radar instrumentation follows.

3.1 Aircraft Equipment

An instrumented, twin engine, turboprop Gruman Gulfstream, operated by

the FAA Technical Center was used to penetrate storm cells under surveillance

by the ground-based radar. Within the storm cells the aircraft sensed c1 /3by

measuring the pitot differential pressure referenced to static pressure (TAS);

outside total temperature, and absolute pressure (barometric altitude) were

also measured. In addition, the aircraft carried a vertical accelerometer

mounted at the center of gravity of the aircraft to provide a measure of

relative turbulence level, an inertial navigation system to provide the

3
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aircraft position, and a time-of-day clock. All of the sensor outputs are

digitally recorded on tape with a I second update rate with the exception of

the pitot pressure and the accelerometer outputs which are sampled 100 and 20

times per second respectively.

3.? Ground Equipment

The ground-based facilities included, in addition to the instrumentation

radar, a radar beacon interrogator and a station-keeping radar which were

used respectively for the control of the aircraft and for the location of

storms. The instrumentation radar consisted of an S-band ASR-8 coherent

transmitter with its front end coupled to a 15-foot parabolic antenna mounted

on a digitally controlled pedestal. A custom-built receiver consisting of a

linear IF strip drives a pair of quadrature detectors which in turn drive

10-bit A/D converters. The output of the A/D converters fills a fast 256K by

20-bit buffer during a sector scan of the antenna. The data is then read out

on tape via a NOVA computer. The antenna has a 1.6-degree one-way beamwidth

and is capable of being pointed in azimuth or elevation either manually or by

computer control.
t

An ATCBI-4 beacon radar is used to locate the aircraft. Its antenna has4

a 2.4-degree azimuthal beamwidth, is mounted on the station keeping radar

antenna, and is located 30 meters from the instrumentation radar.

The station-keeping radar is an FAA S-band ASR-7 terminal radar connect-

ed to a ASR-5 fan-bean antenna. Its output is presented on a PPI to locate

storms. The instrumentation radar cannot be easily used for this purpose.

A Data Entry 2nd Display System (DEDS) presents both analog video and

alphanumeric characters on a PI-like display. Normal video from the station

keeping radar and the beacon returns are presented as analog video. NOVA-

processed data such as dlz level, mean radial velocity, turbulence levels

( 1 / 3 ) as well as the most recent minute's worth of beacon returns are super-

imposed as alphanumerics. This allows the operator to determine in real-time

whether a particular area is hazardous and should be avoided, or whether it

should be penetrated by the instrumented aircraft to gather data.

4



4.0 CALIBRATION AND ERROR ASSESSMENT

Sources of error in the experiments requiring special attention were:

a. Beacon Antenna Pointing (AZ)

b. Instrumentation Antenna Pointing (AZ + EL)

c. Instrumentation Radar and Antenna Gain

d. Beacon Range Error

e. Synchronization of Aircraft and Radar Clocks

Beacon antenna pointing was calibrated by observing a transponder on the

ground whose position is known relative to the radar. The Instrumentation

Antenna pointing was calibrated by directing the antenna to an accurately

calculated position of the sun. By noting how far the antenna has to be mov-

ed to be precisely on boresight with the sun it was found that the error -Jas

small, less than 0.1 degree over a period of approximately six hours. The

Instrumentation Radar antenna gain was determined by measuring the solar flux

level when observing the sun and comparing it with the published values for

that time and day. The radar receiver gain was determined by injecting a

calibrated noise source into the radar waveguide directional coupler. A fix-

ed beacon range error of 0.26 nmi was found when comparing simultaneous ob-

servation of the aircraft by the instrumented radar and the beacon. The er-

ror is attributed to the differences in delay between the ground and aircraft

beacon transponders and has been removed. It is obvious that the ground in-

strumentation computer clock must be carefully synchronized by the aircraft

instrumentation clock. This is done before takeoff and rechecked several

times during the flight by voice comunication. The timing should be better

than one second accuracy and should not cause any appreciable error ir a.&e

overall results.

5.0 DATA REDUCTION PROCEDURES

5.1 Beacon Algorithm

The purpose of the beacop data reduction algorithm is to accurately lo-

cate the instrumented aircraft relative to the storm. However, when the bea-

con data was taken, it was found that some of the data was contaminated by

spurious returns from other aircraft having the same code, from the ground

5



test transponder, and from undetected errors in the NOVA program. The errors

have been corrected, however, since the data is valuable. A successful ef-

fort has been made to retrieve the contaminated data.

Fig. la shows a plot of the raw beacon returns from the July 3 flight.

Returns from the ground have already been removed. The wide scatter is pri-

marily due to the old error in the NOVA program that considers returns in ad-

jacent range gates as separate targets. As a result of this, a corrective

program was written to cluster the returns on the basis that any returns

within a certain area and time box are the same. The results are shown in

Fig. lb. Any missing returns are then filled in using a fourth order least

square fit. Missing points have been caused by propagation effects such as

the orientation of the aircraft or flying in the cone of silence of the bea-

con radar. Other causes of missing returns have been an error in the NOVA

program (which has been since corrected) and possible mixups in the settings

of the data collection equipment. Filling in the missing points is needed to

allow proper smoothing in those areas adjacent to the missing points.

Fig. Ic shows the missing points replaced while Fig. Id has been smoothed and

interpolated. The smoothing and interpolation is accomplished using a Fast

Fourier Transform (FFT) technique. The x and y components of the beacon

track are Fourier-transformed, zeros are added to the high frequency end so

that the total number of FFT points are increased by four, the transform is

then multiplied by a Gaussian weighting function, the inverse transform is

then taken, resulting in a smoothed beacon track with four times as many

points. Rather than having a beacon file with an update of 4.8 seconds, it

is now every 1.2 seconds and will allow a smoother merging with the instru-

mentation radar data.

5.2 Instrumentation Radar Alsorithms

The instrumentation radar records on tape the unprocessed radar data as

an in-phase and quadrature component for each of the range-azimuth cells in a

selected sector. The tape. are then sent to Lincoln Laboratory for proces-

sing in the following manner. The raw data, which represent the returns from

_. .- A
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the rain droplets, were recorded range seqtntially. However, the processing

requires that the data be first reordered In azimuth. A maximum entropy

estimation is then made of the autocorrelation lags. The lags are used in the

computation of moments. The moments, in turn, provide, by using specific

pulse pair algorithms, the intensity (dBz), the mean radial velocity, and the

spectral width (in c1/3 units). The maximum entropy estimation of the lags is

used because it provides a better estimate than a straightforward calcula-

tion. This is because the entropy calculation requires that the estimated

correlation lags be consistent with one another (this insures that the spectra

the lags represent are positive for all frequencies). A set of autocorrela-

tion lags are computed for each radar cell. Typically each cell is made up of

204 returns (I and Q components). The expressions for converting the correla-

tion lags to moments are as follovs:

Intensity or 0-th moment:

dl. - 10 log(kjR 0 1) [3a)

Mean radial velocity or 1st moment:

v- tan -  ) [3b]
4wT Re (RI)

Velocity variance or 2nd moment:

2 A2 I 1
24w2T2 inR21c

where Un is the n'th autocorrelation lag, A the radar wavelength, T is the

Interpulse period, and k a constant determined from the radar parameters. The

11

,__,__,_,________________I_________



above algorithms are subject to a minimum signal-to-noise value. In particu-

lar, the 2nd moment estimator requires at least a 3 dB S/N. The S/N estimator

used is

R R
1/3

S o2
-- W1/(- -I).I -N R 4 / 3

The 2nd moment and S/N estimators were derived assuming the spectra is

Gaussian-shaped. Monte Carlo tests of these estimators show that the algo-

rithms are valid for a time series that has a Gaussian-shaped spectrum.

Homogeneous isotropic turbulence theoretically is expected to produce a

Gaussian-shaped radar spectrum.

The computations produce arrays of numbers that represent the moments at

relatively coarse discrete uniform positions over the recorded sector area.

In the azimuth dimension they are a beamwidth apart while in range they are

spaced 112.5, 225 or 450 meters. Consequently, quantization occurs when one

attempts to assign a value to the moments along the aircraft track. Smoothing

and interpolating these discrete points is accomplished using a two-dimension-

al FFT procedure. Fig. 2 and Fig. 3 are contour plots that were processed in

this manner. Superimposed are the aircraft tracks. In general the tracks ex-

tend in time halfway to the previous scan time to halfway to the next scan

time. Comparing dBz and C13 contours for the same scan, it is clear that the

e1/3 contours are much more structured. The intensity plots are smooth and

featureless compared to the widths (e /3). The e1/3  contours on the right

side have low spectral widths, which imply low turbulence levels while the

left side indicates that there are areas of strong turbulence. In contrast,

the intensity contours give no indication of heavy turbulence on the left

side. Comparisons with the aircraft data will be discussed later.

5.3 Aircraft Data Reduction

The effect of turbulence on the pitot-equipped aircraft is sensed by

measuring the rom acceleration and the dissipation factor. The acceleration

12
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is measured directly. The dissipation factor £ is found from the pitot dif-

ferential pressure Ap, the total (stagnation) temperature T t and the absolute

pressure Pf (free stream pressure or barometric altitude), and is as follows:

RTt /3 2/3

13 -) Ap

F 14]
Y+2 y-1 2/3

C1 / 2 (1 + Ap) 3y [(I + p) y 11 P
Pf Pf f

where the Ap structure function is defined as

D - E(Ap(t + ,) - Ap(T)) 2 1.

t = 2.87 x 106 (.m-.-)2 i-1  gas constant,
sec

y - 1.4 ratio of specific
heats,

T 0.2-1.0 time between
(sec) successive Ap

measurements,

and C 1.77 Kolmogorov's
constant.

Eq. [4) takes Into account the aircraft altitude, airspeed and Mach number.

Both the structure function and the aircraft rus vertical acceleration are

continuously averaged over a 7.5 second period using a cosine squared weight-

ing. Examples of time plots of r 1/3 and rms acceleration are shown in the up-

per and middle curves of Figs. 4 through 7.

17



6.0 COMPARISON OF AIRCRAFT AND RADAR DATA 1/3
The lower curves of Fig. 4 and 5 are the values of e measured by the

radar using Eqs. [2] and [3]. This is of the July 17, 1980 flight and will be

examined at length here because it includes cases where the aircraft passed

through low- and high-turbulence areas. The aircraft made many passes at a

5,000 ft. altitude through a moderately violent thunderstorm in the Atlantic

City area. Many other flights have been examined but not in as much detail.

Figs. 6 and 7 are of the corresponding reflectivity in dBz. The numbered dots

above the radar data (lower curve) represent the midpoint time when a particu-

lar radar scan (or snapshot) was taken. If the aircraft is in a radar cell,

it will appear at this time. The smallest value of reflectivity that can be

measured with the radar is 8 dBz• However, it is felt that in order to

trust the width algorithms (radar e1/3 ) the reflectivity should be greater

than 14 dBz.

The time interval 17:08 to 17:15 Fig. 4 exhibits a reasonable correla-
1/3

tion between radar and aircraft 1 while the corresponding reflectivity

Fig. 6 does not. The radar peak at 17:09 is contaminated by the aircraft.

A spectral analysis of the radar return at this time, range and azimuth show

the aircraft to be present. The peak at scan 12 (17:10:30) is real (no air-
1/3

craft) and correlates with the rms acceleration and the aircraft e • A

scatter plot has been generated over this time interval and is shown in/31/3
Fig. 8a. Here the aircraft e is compared to the radar c A reasonable

correlation is evident. The corresponding correlation coefficient is 0.81.

The correlation with reflectivity (Fig. 8b) is 0.57. If the entire flight of

17 July 1980 is used, then the correlation is 0.50 using spectral width (e1/3)

and 0.29 using reflectivity. The respective scatter plots are shown in Fig.

8c and 8d. In this calculation the data was edited to remove those parts that

were known to be contaminated by the aircraft. For example, at time 17:47,

scan 39, the large lobe is due to the aircraft in a range cell. See Fig. 5.

Fig. 9a and 9b show the interval 17:18 to 17:31. The width correlation is

0.48 while the reflectivity is 0.10. This data includes the large anomalous
1/3

E peak at 17:30:10.

18 t
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The large El/ 3  peak at 17:05:14 has a double maximum spectrum (Fig.

10a). The pulse pair algorithm Eq.(3c] will fail under these conditions and

will produce too large a value. The spectra, in general, have various

shapes. The pulse pair algorithm is designed specifically for Gaussian

shapes, however, sawtooth, flat-top, multimaxima as well as Gaussian shapes

are observed. Consequently it is not surprising that perfect correlations are

not observed. It is reasonable that an algorithm that takes into account

the various shapes should be used. Many of the excessive values of e/3 can

be ascribed to either multi-modes or to flat-top spectra. The anomalous peak

at 17:30:13 has a wide flat-top spectrum (Fig. lOb).

7.0 CONCLUSIONS, AND FUTURE PLANS

The spectral width (e1/3 ) is superior to the reflectivity in determining

the presence of turbulence. The reflectivity is featureless compared to

spectral width. The correlation between aircraft and radar 1/3 is not per-

fect and in general the radar e 1/3 is higher and on occasion may be extreme.

Tha extreme radar c/3 values appear to be caused by flat-top or dual-maxima

spectra.

Work is underway to design new algorithms that will take into account the

spectral shape. Since the raw radar data has been recorded on tape, various

algorithms are being tested to determine the one which results in the best

correlation with the aircraft data. Comparisons between flights have to be

made and an overall correlation coefficient has to be generated.
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APP II A

AIRCRAFT ACCELERATION STRUCTURE FUNCTION

The lift of an aircraft is given by

1 2L -C vS
2 L

where

CL - coefficient of lift,

p - air density,

v - aircraft true airspeed,

S - wing area.

The coefficient of lift, CL, is a linear function of the angle of

attack, over the range of interest. Therefore

1 u 2
L - (-C )Pr S

2 v L a *

where CL is the lift curve slope and u is the vertical component of
a

airspeed. Thus 1

L T -- C PSuv2 L
a

Taking Aifferences we find

1
AL -C pS[uAv + vAu]

2 L
a

Since u<<v and (AP) 2  (AV) 2 we find

I

AL -C pS[vAu]
2L

Ia

. 25r i
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and since the force AL mA&a where m is the aircraft mass, we obtain for the

acceleration difference
I PS

a -- C - vu
2 L m

The structure function is defined as the average of the square of the

differences

D E (a) 2 - C D
aL a m u

Kolmogorov's hypothesis* states that for lateral velocities

Du - 413C(er) 21 3

where C - universal constant (1.77)

c- dissipation factor

r - separation distance when measuring the two velocities

However, r - vt where t is the time difference between successive acceleration

measurements. Therefore, we find for the square root of the acceleration

structure function

1 1/2 1/3 v
4 /3

= C S C -Ca L m

4/3
1/2 1/3 v

m

For the Gulfstream

CL = 5 (radians
-1 )

a

S - 610 square feet

m - 933 slugs

*S. Panchev, "Random Functions and Turbulence," Pergamon Press (1971) p. 151.
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SOmE BASIC RELATIONS CONCERNING THE RADAR EASUREMENT OF AlR TURBULENCE

INTRODUCTION

The use of a radar to measure the level of air turbulence in a rain storm

is a relatively new concept. Consequently, the purpose of this note is to pre-

sent the connections between what a radar measures and the physical properties of

the turbulent atmosphere. In the first section we will show that the radar

spectrum represents the velocity distribution of the rain drops and appears to

have a Gaussian shape. In the second section we will show how the radar spectrum

width (variance) is related to the turbulence intensity and to the radar cell

size.

SHAPE OF THE RADAR SPECTRUM

Consider a volume of scatterers such as rain drops that are being carried

by a homogeneous, turbulent atmosphere. Let us look first at one of the rain

drops. The radar return, in voltage, at time "t" and "t + T" is proportional

to:

i 4w x(t) i4w x(t +T)

• and .e (1)

where x is a random variable representing the position of the drop relative to

the radar and X is the radar wavelength. The correlation function of the return

is by definition

i,4w x(t) i4w x(t + T)
R (0) E {e A •(2)

e i2l [x(t) - x(t .,1

4r

E E{e A

where

u x(t) -x t T)
T

is a random variable representing the average velocity over the interval r. 't"

drops out because the statistics are assumed to be stationary. Evaluating (2)

we find 2

-7 T



•4w .4w

p(T) E {e }- f p (u) e du. (3)

Here p(u) is the probability density of u. However,

p(T) - j S({W) ei , dw (4)
2w

where S(w) is the spectrum observed by the radar. Equating (3) and (4) we find

47r

S(w) e i  dw- 2w p(u) ei-  du.

We see that

0 and du 4 (4a)

and find that
S(w)dw - 2wp(u)du and S(w) - 1 p(u). 

(5)

Thus, we see that the spectrfa is a replica of the probability density of the

velocity averaged over the interval T. Because the spectra of independent pro-

cesses can be added, Eq. (5) is valid for many raindrops, if one assumes all

the droplet cross sections are the same.

It is not difficult to generalize Eq. (5) for varying droplet sizes. The

return at time t for N droplets is

N 0 xMn(t)

n1 A

where A is the amplitude of the nth droplet. The covariance function isn
N 14x,(t Ni4wx (t+T)N A!i(t) N j

R(T) I E{ Ai• . E Ac e.

Separating out the terms where I - J, we have

N 2 %i T N
n() E A + E E Ai A

J-1 1-1
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Remembering that if two random variables (rv's) are independent, the expectation

of the product of two rv's is the product of the expectations, we find

4W

R(c) - N E{A2 )E{e X }

and

R(O) - N 1{A)

Since xi and Xi are independent, the cross terms drop out because

E}e 1  ' fe x x1 9 {e } - 0 when j 1. (6)

Thus

1 iWT 1Cr)4wt
2 f S(w)e dw - P( ) () I

4w

f p(u)e du

or as before

S(w) - p(u). (5)

Thus, the "radar" spectrum is a replica of the velocity probability density.

There appears to be some theoretical justification for the velocity distribution

to be Gaussian. Experimentally, in homogeneous turbulence, the velocity dis-

tribution is symmetric and tends to be nearly Gaussian (I'2'3 ). It should be pointed

out that in a related process, the motion of a molecule in a gas, that the dis-

tribution of one component of the velocity is Gaussian and is known as a Maxvellian

distribution.

VARIANCE OF THE RADAR SPECTRUM

We have just established that the radar spectrum is a copy of the velocity

*. distribution. It follows from Eq. (4a) that the variance of the radar spectrumS2 2
CI. 2 Is related to the velocity variance ou  as follows:
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2 Or~ 2 a2
u

OOJ A.t

We will now show how a u2(or a j ) is related to the air turbulence dissi-

pation factor e.

The variance a0 is by definition equal to

a u .E fu-E fu) )12

E {u 21 (E {u ))2

where the expectation value E{ Iis generally taken to mean an average over en-
sembles. However, the radar takes an average not over ensembles but over the

radar cell volume. If the statistics are stationary over the volume, then volum

averaging is the same as a sampled average. Therefore, a sampled value of the

function "ff is

< f> f A (1) f d

where

fA(ir) dr 1 and dr to a differential volume.

A(r) is the cell size and is closely approximated by

Y(~ 2 + 2 a 2 + 2J

(~32 b2

We are assuming a cylindrical antenna beam of width "a" and a pulse length "b".

Thus, a sampled value of the variance would be

<a 2> .<u 2 > - <u> '<U>

2 2 r

We find a 2 by taking the expectation of the sampled average <a 2>u u

C A(r) 3 fu dr -f A(r I) A(r2) E {u(rl) u(r 2)I dr dr 2 '
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Since E{u 2 } is not a function of r and u(rl) and u( 2) are correlated, we

have

E2 E {u2 A (r,) A(r2 ) Btt r', r 2 ) d'r1 d 2  (7)

where BIt(r1, r2) is the correlation of the two longitudinal velocities at

points r1 and r2. Because the turbulence is assumed homogeneous

Btt Cr1  r2) * Btt (r, - r2)
"

Since B k is a correlation, it can be defined in terms of a 3-dimensional Fourier

transform
i t -('( I - r 2)

Bt ('1 - '2) = 1tIt(t) A dit.

The energy spectrum of the 3 dimensional velocity field O(t) is often

confused with the radar Doppler spectrum S(W). *tt(k) follows an inverse

11/3 power law4 ,5 and has a pole at the origin while S(w) is gaussian-shaped.

0( ) is the velocity spectrum while S(W) represents the velocity distribution.

w has the dimensions of radians/second while t is radians/meter. The

function 0tt(r) is known when the turbulence is isotropic and in the
inertial subrange. We should notice that

E{u 2  BLt (0) - ILL(t) d t

consequently, Eq. (7) becomes

u 41(t 'dtl~ 2~tr,) ti- t) e 1 2) A drrI dr2

S e (76l- 1r~ 2 J ci (8)
of M Ii t - IA(l) e dr I A( 2 ) e d 2 jdt 8

Evaluating the inner integral, by changing to rectangular coordinates, we have

fA(r) air .

1 1

(-c2'w)3"2 b a2  efe 2 dx ,d
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2 2 2

Z- 1 Z .i k~ y eSm+ z & + ik x2 1 2a 2  z ' e 2b 2  dx

()3/2ba2 Le 2a, dyJ da

1 ( 2 b 2 + k2 a2 + k2 a 2 "

-. e

Therefore, Eq. (8) becomes

- b +k 2 + kz a ]d
au2 = t t£(k) [1 - •ykb k2 a

For isotropic turbulence in the inertial subrange
4

2k0t (k) " k (1- x
4r k2  k

where5  E(k) - a £2/3 k-5/3

k2  - k 2 + ky2 + k2

k " Iti

= - 1.35 + .06 (dimensionless)6

and = the dissipation factor.

Substituting and using the following relations

2 . k2 co2

A - k2 sin4 dk d4 d,

we convert Eq. (8) to polar coordinates

2~ 2/3 1 C 12wr 51  r{ 2 a2 *in2 * + b 2 cos2 )
F f f kf sin3  [.-CJekd

0 0 0

c2/3 3 -k2 {a .s2 + b 2co 22

2 . ' " ,- -e dkd-.
0 0
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Using the following solution7 for the inner Integral

fx V-1 1 e-VJ xP) dx- V - P
SO 1- p1 p  r ( )

we obtain
2 /32 2 2 2 1)]/3

aU2 . 9 a2/3 r (5/3) f sin 3* (a2 sin2  + b2 cos ) dO
u 'F 0

and using symmetry we find

U 2 . 9 ac12 /3 r (5/3) 7r/2 $in (a2 *in2 + b 2 con2 )/3 d (9)

0

Substituting t - cos2 0, we find

a 2 . c2/3 r (5/3) a2 /3  f 1a-) (1 b 2 1/3 t-1 /2

u 
2-8 0 t) dt.

0 a

Since we are dealing with real numbers, the integral is valid when

The integral representation of the Gaussian hypergeometric function 
is given by8

Y(a, b; c; z) c) 1 c-b- (1-tz)a dt

r (b) r (c-b) 0

where R (c) > R (b) > 0.

Therefore,

2 2)G( a)21 3  F 1 *; 1 b 2 (10)

a 

(

where b
2 <a

2

The hypergeometric series converges when h2 < 1 and is given by the monotonic

series'

*All the term after the first are negative. It can be shown that there are no

maxim or minima when 0 < h < 1.
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-. h - 1- h h2  5 h3  [h- 1- -
V 2; 2 15 105 1701 [ 2

Since

1 1 5

12 r ( ) r(-.91
2' 1) r -

and 0 < h < 1

we find that

.917 < F(- , h) < 1.3 2_

Consequently, the hypergeometric factor in Eq. 10 has little effect and

that the approximation

2 2 2/3
au r (q) c (C a)

is valid.

For the case when the beamwidth is smaller than the pulse length

2
0 < a 1

b

we can substitute

t - sin 2 4

into Eq. 9 and find in the same manner as before

2 2( 2;/1 2
a r (() (e b) 2 3 F 1 2; 1 a (11)

bb

The series F (-.2;A; g) -

22

4 8 2 32 S3a15- s 9 ' --- --O , 170 b [2

converges as before when 0 < < 1, is also monotonic, and is bounded by
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271 5.- .491 < (- ,2; .; g) <

Consequently, the approximation

au2 r (2) a(c b)2/3
U

is not always justified.

COMMENTS

In a typical radar the pulse length is usually smaller than the beamwidth

and therefore Eq. 10 will apply. The spectral width, ou, will thus be pro-
1/3portional to (E a) / . Since the beamwidth is proportional to the radar

1/3 --range, and that the buffeting of an aircraft can be shown to be proportional to

we find by solving Eq. (10) for £1/ 3 that

3 1

aa

u
C-i73
R1/

where R is the range to the turbulence and C is a constant. Thus the buffeting will

be directly proportional to the spectral width as seen at the radar and inversely

proportional to the cube root of the range.

The use of a Gaussian function to approximate the range dimension of the

cell is reasonable if one considers the effect of convolving the impulse

response of the radar receiver with the transmitted rectangular pulse shape.

The effective pulse shape will be rounded and look like a Gaussian curve.

This will be particularly true if the receiver bandpass is closely matched to

the transmitted pulse. The use of a Gaussian curve to approximate the main-

lobe of the antenna has long been used and is considered to be quite accurate.

The variance derivation assumes that (1) the turbulence is uniform through-

out the cell, (2) we are in the inertial subrange, (3) the raindrops move with

the wind, and (4) there is no wind-shear. These assumptions are valid be-

cause of the following reasons. (1) By using small radar cells, homogeneity
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becomes more likely. This is accomplished by operating at shorter radar

ranges and/or using narrower antenna beams. (2) The inertial subrange

signifies that the effects of inertia override the effects of viscosity and

of gravity. The inertial subrange scale extends from about a millimeter to

about a kilometer. Consequently radar cells less than a kilometer long can

be filled with homogeneous turbulence. (3) The horizontal velocity com-

ponents of the rain are expected to follow the wind but not the vertical

components. At most antenna elevation angles of interest (i.e., small eleva-

tion angles), the horizontal components will dominate. (4) First-order ef-

fects of wind-shear broadening can be taken into account by measuring the

mean velocity of adjacent cells and subtracting out the effect.

In the above derivation of the radar spectrum variance, the approach is

similar to that of Frisch and Clifford11 with the following differences. It

was not necessary to explicitly take the 3-dimensional Fourier transform

F p() in t space of the antenna pattern. The universal constant a (A in the

Frisch paper) is not .47 but 1.35. The solution of the case where the

pulse length is longer than the beamwidth is in error.
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APPZIDIZ C

AIRCRAFT WEASUREMENT OF CL/

The following parameters are available ot the Gulfstream aircraft to

measure turbulence

Pf a Static or free stream pressure

Ap - Pitot tube differential pressure

Tt a Stagnaation or total temperature

Pf is taken from the static port of the pitot tube. Ap - Pt -Pf9

where Pt is the total or stagnation pressure. Isentropic and ideal gas

flow conditions are assumed permitting the following relations to be used.

P 
y

t y-I 2 y-)
- a ( 1+ ) ()

Pf 2

T
t y-l 2

T f 2

2
2 u

M - - (3)
yRTf

Hert H is the Mach number, y is the ratio of specific heats, R is the gas

constant, and u is the free stream airspeed.

Combining (1) and (3) we have

y-1

P y 2

t y-1 u(_ .I + -(4)

Pf 2 yRTf
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Even under conditions of heavy turbulence, the fluctuations of Pt. Tts

M and u will be small compared to their respective mean values. Consequently,

we can take differentials of (4), substitute differences and we find

I

t - Ap uhu

P f P f RT f

The structure function D is defined as the expectation of the differences

of successive measurements squared or

D ()AEflu(t+T) -u(t)] 21
u

Therefore, we can rewrite (5) as

P Pt. D u2 D
Dp

t Ap u
- - ____ (6)

Kolmogorov's Hypothesis relates Du to e as follows:

D - C(CuT) 2 / 3  (7)

where T is the time between measurements and C is a universal constant.

Combining (6) and (7) we find

P

1/3 -1/2 -1/3 -4/3 t Ap
e -C T U RT (8)
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However, since the temperature sensor does not measure the free stream

temperature Tf but the total temperature Tt, we must combine (1), (2)

and (3) with (8) and finally find

RT 1/3 2/3

1/3 2y
C (9)

y+2 y-I 2/3

C1/2(1 + p) 3y [(1 + p) y _1] P
Pf P f

where Ap is taken to be the mean of the differential pitot tube pressure over

the averaging period of the structure function.
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